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• Cr(VI) impacted core from 100-D area borehole (DOE

Hanford facility in southeastern Washington State),

designated groundwater monitoring well 199-D2-8
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• Cr(VI) impacted core from 100-D area borehole (DOE

Hanford facility in southeastern Washington State),

designated groundwater monitoring well 199-D2-8

• Sedimentary flood deposits described as loosely

consolidated fine-grained sand and silt (Lindsey and

Jaeger, 1993)

• The water table was 24.8m bgs.  Sediment samples

taken from Ringold Formation at 23.3m and 25.9m

bgs.

• Enrichments grown in the presence of Cr(VI) and

nitrate - with acetate, D-xylose or glycerol as a carbon

and energy source.

Background



Closest match Similarity 

index3
26m-X 23m-X 23m-G ES

WS01 Cellulomonas 

turbata

0.856 _ _ _ _
WS12 Cellulomonas 

sp. str. 1533

0.954 _ _ _ _
WS18 Cellulomonas 

turbata

0.811 _ _ _ _
ES6 Cellulomonas 

hominis

0.933 _ _ _ _
WS06 Sanguibacter 

inulinus

0.996 _ _ _ _
WS08 1397 clone SB-

22 

0.972 _ _ _ _
WS10 Pseudomonas 

brassicacearum

0.953 _ _ _ _

WS19 Marine snow 

bacterium

0.712 _ _ _ _
WS13 Arthrobacter 

sp. str. S2

0.771 _ _ _ _

Rep. 

Strain1
Isolates foundRDP II2

•8 of 9

isolated

strains were

Gram positive

•4 were

identified by

16S rRNA

sequence and

membrane

fatty acid

composition

as belonging

to the genus

Cellulomonas

Smith, W. A.; Apel, W. A.; Petersen, J. N.; Peyton, B. M. Effect of carbon and energy source on bacterial chromate reduction.

Bioremediation Journal 2002, 6 (3), 205-215
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Cellulomonas ES6 on ferrihydrite
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Long Term Cr(VI) Reduction



Long Term Flow Studies
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Submitted to Biotech. Bioeng., Permeable reactive biobarriers for in-situ Cr(VI) reduction: Bench scale tests using

Cellulomonas sp. strain ES6. S. Viamajala, B.M. Peyton, R. Gerlach, V. Sivaswamy, W.A. Apel, J.N. Petersen



Solid Phase Cr Accumulation
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Submitted to Biotech. Bioeng., Permeable reactive biobarriers for in-situ Cr(VI) reduction: Bench scale tests using

Cellulomonas sp. strain ES6. S. Viamajala, B.M. Peyton, R. Gerlach, V. Sivaswamy, W.A. Apel, J.N. Petersen



Cr(VI) Reduction - ES6 w/AQDS
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Energy Storage Compounds?

- Polyhydroxybutyrate (PHB)

- Trehalose

- Polyphosphate
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HR-TEM w/

elemental

analysis

indicates

that U &

phosphate

was

precipitating

both inside

and outside

the cell.
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First derivative X-ray

absorption near edge

structure (XANES)

spectra of uranium

precipitates.

The buffer and the

presence or absence of

AQDS affected the

U(IV):U(VI) ratio.

Thomas Borch, CSU
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DOE Field Site Description

INL Radioactive Waste
Management Complex
(RWMC) – Cold Test Pit South
(CTPS)

CTPS constructed in 1988,
filled with simulated LLW waste
that conforms to the historical
disposal practices at the site –
buried wood and cardboard.

CTPS provides an environment
to test innovative waste
characterization and retrieval
technology.
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• DNA was extracted from each

of these four layers for

microbial community analysis.



Percentage Phyla in Each Soil

Layer
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Microbial Community Analysis

G2 Phylochip

Sent subsamples of each DNA

extract (F, FW, WW, and WC) to

Gary Anderson & Yvette Piceno

(LBNL) for G2 Phylochip analysis

(Brodie et al. 2006)



Comparison of Clone Library and

Phylochip Diversity

 # of 

Phyla 

# of 

Classes 

# of 

Orders  

# of 

Families  

OTUs 

Fill 30(7) 46 90 210 1630 

Fill/Waste  33(9) 61 124 289 2056 

Wood/Waste 30(8) 51 98 212 1984 

Waste/Clay  28(7) 49 91 198 1925 
 

 # of 

Phyla 

# of 

Classes 

# of 

Orders  

# of 

Families 

OTUs 

Fill 10(2) 18 29 45 151 

Fill/Waste  7(0) 13 18 32 143 

Wood/Waste 11(1) 19 36 48 127 

Waste/Clay  11(1) 17 37 46 150 
 

( ) indicate number of candidate Phyla

Clone

Library

G2

Phylochip



G2 Phylochip

Results

F FW WW WC
Acidobacteria 62 65 24 21

Actinobacteria 157 218 219 175

Aquificae 1 2 2 1

Bacteroidetes 95 143 148 136

BRC1 0 3 0 0

Caldithrix 2 2 2 2

Chlamydiae 1 2 2 2

Chlorobi 13 11 11 11

Chloroflexi 35 35 38 31

Coprothermobacter 1 1 0 0

Cyanobacteria 7 38 49 49

Deferribacter 0 1 1 0

Deinococcus-Thermus 3 4 4 4

Dictyoglomi 1 1 1 1

Firmicutes 264 391 353 308

Gemmatimonadetes 9 13 13 12

Marine Group A 1 2 2 0

Natronoanaerobium 5 5 5 5

NC-10 4 4 4 4

Nitrospira 8 9 9 7

OP-10 7 8 7 15

OP3 3 3 0 0

OP8 2 2 0 0

OP9 0 3 0 0

Planctomycetes 18 23 23 23

Proteobacteria 805 969 970 934

Spirochaetes 34 35 37 36

Synergistes 9 3 9 6

TM-7 6 8 6 8

Thermodesulfobacteria 1 1 1 1

Thermotogae 0 1 1 1

Verrucomicrobia 20 25 28 27

WS3 3 3 3 0

• Rolled up to the

Phylum level

• Detailed

physiology for

each OTU?

• Translated into

potential

physiological

capabilities, e.g.,

e- donor/acceptor

combinations



CWTP Isolates

Isolate 

Designation

Genus of 

Isolate

Top BLAST 

Search Result

% Similarity 
to BLAST 

Result

O2

Requirements

Sources of 

Isolate

A Pseudomonas
Pseudomonas sp. 

4/11GC3#e 99 Aerobic FW, WW, WC

B Streptomyces

Streptomyces 

atratus 99 Aerobic FW, WW, WC

C Flavobacteria

Flavobacterium

sp. WB 3.1 -83 98 Aerobic FW, WW, WC

D Pedobacter Pedobacter terrae 99 Aerobic WW

E Serratia
Serratia

proteamaculans 97
Facultative 
Anaerobe FW

F Cellulomonas
Cellulomonas 
parahominis 99

Facultative 
Anaerobe FW, WW, WC

G Paenibacillus
Paenibacillus sp. 

GP26-03 99
Facultative 
Anaerobe C

Isolate 

Designation

Genus of 

Isolate

Top BLAST 

Search Result

% Similarity 
to BLAST 

Result

O2

Requirements

Sources of 

Isolate

A Pseudomonas
Pseudomonas sp. 

4/11GC3#e 99 Aerobic FW, WW, WC

B Streptomyces

Streptomyces 

atratus 99 Aerobic FW, WW, WC

C Flavobacteria

Flavobacterium

sp. WB 3.1 -83 98 Aerobic FW, WW, WC

D Pedobacter Pedobacter terrae 99 Aerobic WW

E Serratia
Serratia

proteamaculans 97
Facultative 
Anaerobe FW

F Cellulomonas
Cellulomonas 
parahominis 99

Facultative 
Anaerobe FW, WW, WC

G Paenibacillus
Paenibacillus sp. 

GP26-03 99
Facultative 
Anaerobe WC
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Summary

Fermentative organisms have unique metal transformation

capabilities and can play a significant role in subsurface Cr

and U bio-immobilization.

Cellulomonas sp. strain ES6 was shown to simultaneously

immobilize U by reduction to U(IV) and by precipitation

through release of PO4
3-, with the ratio dependent on

bicarbonate conc.

ES6 reduced Cr(VI) for long periods of time with little

substrate addition.

Established fermenting communities are complex … requiring

modern tools to characterize – But we need to reduce the

data to “functional physiologies” for modeling, and for field

applications & monitoring.



Questions?


